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The analytic model for the evolution of single and multiple bubbles in Rayleigh-Taylor mixing is presented
for the system of arbitrary density ratio. The model is the extension of Zufiria’s potential theory, which is based
on the velocity potential with point sources. We present solutions for a single bubble, at various stages, from
the model and show that the solutions for the bubble velocity and curvature are in good agreement with
numerical results. We demonstrate the evolution of multiple bubbles for finite density contrast and investigate
dynamics of bubble competition, whereby leading bubbles grow in size at the expense of neighbors. The model
shows that the growth coefficient � for the scaling law of the bubble front depends on the Atwood number and
increases logarithmically with the initial perturbation amplitude. It is also found that the aspect ratio of the
bubble size to the bubble height exhibits a self-similar behavior in the bubble competition process, and its
values are insensitive to the Atwood number. The predictions of the model for the similarity parameters are in
accordance with experimental and numerical results.
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I. INTRODUCTION

Fluid mixing occurs frequently in basic science and engi-
neering applications. When a heavy fluid is supported by a
lighter fluid in a gravitational field, the interface between the
fluids is unstable under small disturbances. This phenomenon
is known as the Rayleigh-Taylor �RT� instability �1–3�. The
RT instability may occur whenever the density and pressure
gradients are in opposite directions and plays important roles
in many fields ranging from astrophysics to inertial confine-
ment fusion �4�. Since Rayleigh �1� first considered this
problem, it has received attention in a wide range of con-
texts, but many aspects of dynamics of the instability are still
uncertain. For a review, see Sharp �4� and Zabusky �5�.

Small perturbations at the interface in the RT instability
grow into nonlinear structures in the form of bubbles and
spikes. A bubble �spike� is a portion of the light �heavy� fluid
penetrating into the heavy �light� fluid. In a system of single-
mode periodicity, the bubble attains a constant asymptotic
growth rate. When the interface has multimode or random
initial perturbations, different frequencies excite nonlinear
interactions and the flow develops into a turbulent mixing.

The main purpose of this paper is to develop a model for
single and multiple bubbles of arbitrary density ratio and
present solutions for bubble evolutions. Theoretical models
for comprehensive descriptions of the motion of bubbles are
potential flow models proposed by Layzer �6� and Zufiria
�7�. Both Layzer and Zufiria models approximate the shape
of the interface near the bubble tip as a parabola and give a
set of ordinary differential equations to determine the posi-
tion, velocity, and curvature of the bubble. The main differ-
ence of two models is that the velocity, potential in the
Layzer model is an analytical function of sinusoidal form,
while in the Zufiria model, it has a point source �singularity�.
The Layzer and Zufiria models were limited to the case of
infinite density ratio �fluid and vacuum� for a long time, but
recently there has been significant progress in two models

and been generalized to the system of finite density ratios for
a single bubble �8–12�. Systematic comparisons of potential
flow models for two-fluid systems are found in Ref. �13�. In
this paper, we present solutions for a single bubble from the
Zufiria model, separating stages into linear, asymptotic, and
finite times, and extend the single bubble model to multiple
bubbles of finite density ratio.

We will show that the Zufiria model provides good pre-
dictions for both the bubble velocity and the bubble curva-
ture. The bubble curvature is an important parameter because
it sets a length scale and plays a key role in the dynamics of
the bubble interaction. The previous theoretical models for
the RT instability failed to give good predictions for the
bubble curvature.

The evolution of unstable interfaces with initial random
perturbations are much more complicated than that of single
mode. At the random perturbations, bubbles of different radii
propagate with different velocities and the leading bubbles
grow in size at the expense of their neighboring bubbles.
This phenomenon is known as a bubble interaction or bubble
merger process �4,6�. We demonstrate the evolution of mul-
tiple bubbles and investigate the dynamics of bubble interac-
tions in the system of finite density ratios.

A central issue in the turbulent mixing by the RT instabil-
ity is a scaling law for the growth of the mixing zone. It has
been known that the bubble front in the RT mixing grows as

h = �
�1 − �2

�1 + �2
gt2, �1�

and the coefficient � is insensitive to the density ratio
�14–16�, where �1 and �2 are the densities of heavy and light
fluids, and g is a gravitation acceleration. The implication of
Eq. �1� is that, at self-similarity, all memory of initial condi-
tions are lost and the only relevant length scale is gt2.

Several theoretical models �17–24� have been proposed to
estimate the growth coefficient �, but most of them are based
on statistical or phenomenological equations, which usually
include unknown parameters. Contrasting to statistical and
phenomenological models, our model is mathematically de-*sohnsi@kangnung.ac.kr
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rived by the potential theory and gives analytic equations to
determine the bubble fronts. It will be shown that the predic-
tion for the coefficient � from our model agrees well with the
results of numerical simulations and experiments. We inves-
tigate the dependence of the growth constant � on the den-
sity ratio and initial conditions, as well as the self-similarity
parameter �, defined as the ratio of the bubble size to the
bubble height.

In Sec. II, we describe the potential flow model with a
source singularity for the motion of a single bubble of arbi-
trary density ratio. In Sec. III, we present the linear,
asymptotic, and finite time solutions from the potential flow
model for the growth of a single bubble in RT instability and
give the validation study for the solutions. In Sec. IV, the
potential flow model is extended to multiple bubbles of arbi-
trary density ratio and, in Sec. V, it is applied to the simula-
tion of the bubble interaction process. Section VI gives con-
clusions.

II. SINGLE BUBBLE MODEL

We consider an interface, in a vertical channel, between
two fluids of different densities in two dimensions. The up-
per fluid is heavier than the lower fluid, i.e., �1��2. We
assume that the fluids are incompressible, inviscid, and irro-
tational. Then, there exist complex potentials W1�z�=�1

+i�1 and W2�z�=�2+i�2 for each fluid, where � is the ve-
locity potential and � the stream function. The location of
the bubble tip is Z�t�=X�t�+iY�t�, in the laboratory frame of
reference, with Y�t�=L /2, where L is a channel width. The
bubble moves in the x direction with the tip velocity U. It is
convenient to choose a frame of reference �x̂ , ŷ� comoving
with the tip of the bubble. In this moving frame, the interface
around the bubble tip is approximated as

��x̂, ŷ,t� = ŷ2 + 2R�t�x̂ = 0, �2�

where R is the local radius of curvature.
Extending Zufiria’s model �7�, we take the complex po-

tentials

W1�ẑ� = Q1 ln�1 − e−k�ẑ+H�� − Uẑ , �3�

W2�ẑ� = Q2 ln�1 − e−k�ẑ−H�� + �K − U�ẑ , �4�

where k=2� /L is the wave number. The potential W1 de-
scribes the source flow of strength Q1, located at �x̂ , ŷ�
= �−H ,0�, in the uniform stream U. The potential W2 gives
the source flow of strength Q2, located at �x̂ , ŷ�= �H ,0�, in
the uniform stream U−K. The potentials �3� and �4� can be
derived from the Schwartz-Christoffel transformation �25�.
The corresponding velocity potentials and the stream func-
tions are given by

�1 =
Q1

2
ln�cosh k�x̂ + H� − cos kŷ� − � k

2
Q1 + U�x̂ , �5�

�1 = Q1 arctan�coth
k�x̂ + H�

2
tan

kŷ

2
� − � k

2
Q1 + U�ŷ ,

�6�

�2 = �1�Q1 → Q2,H → − H,U → U − K� , �7�

�2 = �1�Q1 → Q2,H → − H,U → U − K� . �8�

We consider the streamline pattern of �1 and �2. The

streamline through an arbitrary reference point �x0̂ ,y0̂� is de-

fined by �i�x̂ , ŷ�=�i�x0̂ ,y0̂�, i=1,2. Figure 1�a� illustrates the
streamlines of �1, which correspond to the infinite density
ratio case. The curve obtained by the streamline �1�x̂ , ŷ�
=�1�0,0� through the stagnation point at x̂= ŷ=0 determines
the bubble profile. In fact, the streamlines of �1 below the
bubble profile are artificial, because the potential W1 serves
the flow of the upper fluid. Figure 1�b� shows the streamlines
of �1 and �2, which describe the flow of a bubble of finite
density contrast. The streamlines of �2 can be obtained by

Y

X

Y

X

(a)

(b)

FIG. 1. Streamline pattern. �a� Streamlines of �1. �b� Stream-
lines of �1 and �2.
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flipping those of �1 with respect to the line x̂=0 and taking
only the curves below the bubble profile.

From the relation �1�x̂ , ŷ�=�1�0,0�, we find that the ana-
lytic expression of the bubble profile is

x̂ =
1

k
ln� sin�	kŷ�

sin�
	kŷ�
� − H , �9�

where 
=e−kH and 	=1/ �1−
�. Expanding this equation at
ŷ=0, the radius of the bubble curvature is given by

R =
3�ekH − 1�
k�ekH + 1�

. �10�

This equation provides the relation between the variables R
and H. We see that, for H�0, the dimensionless curvature
1/ �kR� is larger than 1/3. This fact implies that the present
model is valid, in a strict sense, for moderately small initial
amplitudes, and does not give early time solutions of bubble
evolutions with very small initial amplitudes. The bubble
width also can be obtained from Eq. �9�. Setting sin�	kŷ�
=0 in Eq. �9�, one finds the bubble width � by

� = �1 − e−kH�L . �11�

The evolution of the bubble is determined by the kine-
matic condition and the Bernoulli equation

D��x̂, ŷ,t�
Dt

= 2
dR

dt
x̂ + 2Rui + 2ŷvi = 0, for i = 1,2,

�12�

�1� ��1

�t
+

1

2
���1�2 + �g +

dU

dt
�x̂�

= �2� ��2

�t
+

1

2
���2�2 + �g +

dU

dt
�x̂� , �13�

where ui and vi, i=1,2, are x̂ and ŷ components of the inter-
face velocity taken from the upper and lower fluids. The
kinematic condition implies the continuity of the normal
component of fluid velocity across the interface.

Expanding the complex potentials �3� and �4� in powers
of ẑ, we have

W1 = Q1	
n=0

�
cn

n!
ẑn − Uẑ , �14�

W2 = Q2	
n=0

�
c̃n

n!
ẑn + �K − U�ẑ . �15�

It is easy to check that cn+1=dcn�H� /dH and c̃n+1=
−dc̃n�H� /dH for n0, with c0=ln�1−e−kH� and c̃0=ln�1
−ekH�.

The relations dWi /dẑ=ui−ivi, i=1,2, give the expres-
sions for the interface velocity

u1 = Q1�c1 + �c2 + c3R�x̂� − U + O�x̂2�,

v1 = − c2Q1ŷ + O�x̂3/2� , �16�

u2 = Q2�c̃1 + �c̃2 + c̃3R�x̂� + �K − U� + O�x̂2�,

v2 = − c̃2Q2ŷ + O�x̂3/2� . �17�

Substituting Eqs. �16� and �17� into the kinematic condition
�12� and satisfying up to first order in x̂, it gives

dX

dt
= U = c1Q1 = c̃1Q2 + K , �18�

dR

dt
= − Q1�3c2 + c3R�R = − Q2�3c̃2 + c̃3R�R . �19�

In fact, in the present model, the kinematic condition �12� is
satisfied for all values of x̂. One can check the satisfaction of
the kinematic condition for higher order in x̂, expanding the
approximations of the interface �2�, and fluid velocities �16�
and �17�, to higher order.

Using Eqs. �14� and �15�, the first and second order equa-
tions in x̂ of Eq. �13� are

�c1 + c2R�
dQ1

dt
+ Q1�c2 + c3R�

dH

dt
− Q1

2c2
2R + g

= ���c̃1 + c̃2R�
dQ2

dt
+

dK

dt
− Q2�c̃2 + c̃3R�

dH

dt

− Q2
2c̃2

2R + g� , �20�

� c2

2
+ c3R + c4

R2

6
�dQ1

dt
+ Q1� c3

2
+ c4R + c5

R2

6
�dH

dt
+

1

2
F1

= ��� c̃2

2
+ c̃3R + c̃4

R2

6
�dQ2

dt
− Q2� c̃3

2
+ c̃4R + c̃5

R2

6
�dH

dt

+
1

2
F2� , �21�

where

F1 = Q1
2�c2

2 − 2c2c3R + �3c3
2 − 4c2c4�

R2

3
� ,

F2 = Q2
2�c̃2

2 − 2c̃2c̃3R + �3c̃3
2 − 4c̃2c̃4�

R2

3
� ,

and �=�2 /�1 denotes the density ratio. Here, the expressions
for cn are

c1 =
k

ekH − 1
, c2 = −

k2ekH

�ekH − 1�2 , c3 =
k3ekH�ekH + 1�

�ekH − 1�3 ,

c4 = −
k4ekH�e2kH + 4ekH + 1�

�ekH − 1�4 ,

c5 =
k5ekH�e3kH + 11e2kH + 11ekH + 1�

�ekH − 1�5 ,

and c̃n�H�=cn�−H�. Note that cn, 1� i�5, are identical to
Zufiria’s �7�, setting k=2 �L=��. The ordinary differential

BUBBLE INTERACTION MODEL FOR HYDRODYNAMIC… PHYSICAL REVIEW E 75, 066312 �2007�

066312-3



equations �18�–�21� determine the dynamics of a single
bubble of arbitrary density ratio.

We examine the range of validity of the modeling for the
physical flow system. Differentiating the potentials �3� and
�4�, it gives

dW1

dẑ
= Q1

k

ek�ẑ+H� − 1
− U , �22�

dW2

dẑ
= Q2

k

ek�ẑ−H� − 1
+ K − U . �23�

We see from Eq. �22� that, the fluid velocity decays expo-
nentially from the interface to the heavy fluid, in laboratory
frame. From Eqs. �23� and �18�, it is easy to check that the
velocity in the light fluid converges to e−kH�K−U� as x̂→
−�. The model thus does not satisfy the zero flux condition
at x̂→−�. We also find that the whole velocity field in the
light fluid converges asymptotically to the bubble velocity,
from the fact that Q2→0 and K→U at a late time �see Sec.
III�. This behavior of the flow behind the bubble agrees, in
near field, with the observation from numerical results in
Ref. �8�: The vertical velocity in the light fluid flattens out
near the bubble tip and the horizontal velocity goes to zero.
Therefore, the present model gives an appropriate descrip-
tion to the flow near the bubble, and is not valid for the far
field behind the bubble. The model assumes that the far field
in the right fluid has little influence on the motion of the
bubble front. This assumption will be validated at Sec. III by
comparisons with numerical results.

III. SINGLE BUBBLE SOLUTIONS

In this section, we present the linear solution, the
asymptotic solution, and the finite time solution of a single
bubble from Zufiria’s model, and compare with the results of
other models and numerical simulations.

A. Linear solution

We first derive the linear solution of the Zufiria model. We
show that, at small amplitude or linear stage, the Zufiria
model agrees with the result of the linear stability analysis
�2,3�. Note that the linear stability analysis, assuming that the
small disturbance to the interface is proportional to exp�iky
+�t�, gives �2=Agk, where A= ��1−�2� / ��1+�2� is the At-
wood number.

Assuming that the dimensionless curvature �kR�−1 and di-
mensionless velocity 
k3 /gQ are small, Eqs. �19� and �20�
are approximated as

d�

dt
= c3Q1 = c̃3Q2, �24�

c2
dQ1

dt
+ c3Q1

dH

dt
+ g� = ��c̃2

dQ2

dt
− c̃3Q2

dH

dt
+ g�� .

�25�

Here, �=1/R represents the bubble curvature.

Equation �25� can be written as

d

dt
�c2Q1� + g� = �� d

dt
�c̃2Q2� + g�� . �26�

One can check that c̃2Q2=−c2Q1, from Eq. �24� and the ex-
pressions of cn and c̃n. Then, defining �=c2Q1, Eq. �26� re-
duces to

d�

dt
= − Ag� . �27�

Differentiating this equation and using Eq. �24�, we have

d2�

dt2 = −
c3

c2
Ag� =

1 + 


1 − 

Agk� , �28�

recalling 
=e−kH. From Eq. �10�, the assumption � /k�1 fol-
lows 
�1/2. Then, Eq. �28� behaves approximately as

d2�

dt2 = Agk� , �29�

which gives ��sinh��t� with �=
Agk. From the definition
of � and Eq. �18�, the velocity has the solution U
�sinh��t�, and therefore X�cosh��t�. The amplitude of the
interface approximately has the exponential growth with the
rate �, which agrees with the linear stability analysis.

B. Asymptotic solution

The system of ordinary differential equations �18�–�21�
has a critical point which corresponds to a steady rising
bubble. The critical point �or, asymptotic solution� can be
easily obtained by setting all time derivatives of variables to
zero in Eqs. �19�–�21�. Then, the asymptotic solution for a
bubble in the RT instability is

R →

3

k
, H →

1

k
ln�2 + 
3�, Q1 →

2

31/4
 2Ag

�1 + A�k3 ,

U →

6 + 4
3

2 + 
3

 2Ag

3�1 + A�k
, Q2 → 0, K → U .

�30�

We see that the bubble converges to the constant limit, for-
getting the initial condition. The asymptotic solution was
also reported in Sohn �10� and the derivation is found there.
From Eqs. �11� and �30�, we find the asymptotic bubble
width by �=0.73L, which is slightly larger than the diameter
of the bubble curvature 2R→0.55L.

The asymptotic bubble velocity in Eq. �30� has a similar
functional form with the solution of the Layzer model, ob-
tained by Goncharov �8�, except the factor 
6+4
3/ �2
+
3�=0.963. However, the asymptotic bubble curvatures
from two models have quantitatively a large difference. The
solution of the Layzer model is �Layzer→k /3, while in the
Zufiria model, �Zufiria→k /
3 from Eq. �30�. This discrepancy
may be due to the fact that the bubble curvature is a much
more sensitive variable than the bubble velocity and the
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Layzer model takes only the first harmonic in the velocity
potential. Adding higher mode harmonics to the potential in
Layzer’s model, the difference of the asymptotic curvatures
from two models may be reduced.

C. Finite time solution

We now investigate the agreement of the models by com-
paring the finite time solutions of the models with numerical
results. The solutions for finite times can be obtained by
solving Eqs. �18�–�21� numerically. Differentiating Eqs. �18�
and �19�, dQ2 /dt and dK /dt in Eqs. �20� and �21� can be
expressed in terms of dQ1 /dt, dH /dt, and other variables.
Then, Eqs. �20� and �21� become ordinary differential equa-
tions of dQ1 /dt and dH /dt, so that they can be integrated.
For numerical integrations, we employ the standard fourth
order Runge-Kutta method. The initial conditions are deter-
mined from a given initial amplitude and velocity. R�t=0�
can be set from the initial amplitude, assuming a sinusoidal
shape, and H�t=0� is given by Eq. �10�. Then, Q1�t=0� is set

by Eq. �18� and the initial velocity, Q2�t=0� by Eq. �19�, and
K�t=0� by Eq. �18�.

All results in this section are plotted in dimensionless
units. The dimensionless time, velocity, and curvature are
given by t
kg, U
k /g, and � /k, respectively.

In Fig. 2, we compare the solutions for the bubble veloc-
ity from the Zufiria model with numerical results taken from
Ref. �26�, and the solutions of the Layzer model �8�. The
numerical simulations in Ref. �26� are performed by the vor-
tex method and the solutions of the Layzer model are ob-
tained by integrating Eqs. �7� and �8� in Ref. �8�. The left and
right plots in Fig. 2 correspond to the cases of A=0.3 �den-
sity ratio 1.86:1� and A=1 �fluid and vacuum�, respectively.
The physical parameters are g=1 cm/s2 and k=1 cm−1, and
the initial amplitude and velocity are 0.5 cm and 0, respec-
tively. Figure 2 shows that, for both cases, the solutions of
the Zufiria model for the bubble velocity agrees better with
the numerical results than with the Layzer model over all
time ranges. The predictions for the asymptotic velocity are
in excellent agreement for both models, but the Zufiria
model fits slightly better with the numerical results. We men-
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FIG. 2. Bubble velocity for �a� A=0.3 and �b� A=1.
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FIG. 3. Bubble curvature for �a� A=0.3 and �b� A=1.
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tioned that the analytic solutions for the asymptotic velocity
from both models differ only in the factor 0.963. Therefore,
0.963 in the asymptotic solution of the Zufiria model plays a
correction factor from the Layzer model.

Figure 3 plots the solutions for the bubble curvature from
two models and the numerical results, for the same cases in
Fig. 2. Figure 3 shows that the Zufiria model provides quali-
tatively good predictions for the bubble curvature, while the
solutions of the Layzer model deviate from the numerical
results. Figure 3 raises a question of the independence of
density ratios for the asymptotic bubble curvature. Both the-
oretical models predict the constant asymptotic bubble cur-
vature, independent to the density ratio, while the numerical
solutions converge to slightly different limits between 0.5
and 0.55. Note that the numerical method in Ref. �26� has a
regularization parameter for the finite density ratio cases,
which leads to the smoothing effect to the solution. In fact,
few numerical results have been reported for the bubble cur-
vature of finite density ratio, although numerical simulations
for the single-mode RT instability have been performed by
many authors using various numerical methods �27–31�.
Therefore, the independence of density ratios for the
asymptotic bubble curvature is not concluded at the current
stage and this will be the subject of future researches.

IV. MULTIPLE BUBBLE MODEL

The single bubble model is here extended to multiple
bubbles of arbitrary density ratio. We follow the similar ap-
proach as the infinite density ratio case in Zufiria �7�. The
channel of width L contains N distinct bubbles and the posi-
tions of the bubble tips are Zi=Xi+iYi, i=1,2 , . . . ,N. We
assume that the horizontal positions of bubbles Yi are con-
stants, neglecting lateral effects. The potentials for multiple
bubbles can be constructed as the sum of the potential for
each bubble. Then, the potentials for the bubbles are

W1
i �ẑ� = 	

j=1

N

Q1
j �ln�1 − ek/2�Zj−Hj−Zi−ẑ�� + ln�1 − ek/2�Zj

*−Hj−Zi−ẑ���

− Uiẑ , �31�

W2
i �ẑ� = 	

j=1

N

Q2
j �ln�1 − ek/2�Zj+Hj−Zi−ẑ�� + ln�1 − ek/2�Zj

*+Hj−Zi−ẑ���

+ �Ki − Ui�ẑ , �32�

for i=1, . . . ,N, where the * denotes the complex conjugate.
In Eqs. �31� and �32�, the method of images is applied for

the modeling of the wall. That is to say, for each potential,
the image potential is placed at the conjugate point. One can
imagine that the symmetric bubbles lie in the region −L
�Y �0. Then, the flow is periodic with the period 2L and
the line Y =0 becomes a streamline by the symmetry, which
is regarded as a wall.

The potentials �31� and �32�, after the expansions with
respect to ẑ, have the form

W1
i = 	

j=1

N �Q1
j 	

n=0

�
cn

ij

n!
ẑn� − Uiẑ , �33�

W2
i = 	

j=1

N �Q2
i 	

n=0

�
c̃n

ij

n!
ẑn� + �Ki − Ui�ẑ . �34�

Here, the coefficients cn
ij and c̃n

ij have complex values, and

are denoted as cn
ij =an

ij +ibn
ij and c̃n

ij = ãn
ij +ib̃n

ij. The expressions
of cn

ij and c̃n
ij are given in the Appendix. Note that the rela-

tions cn+1
ij =dcn

ij�Hj� /dHj and c̃n+1
ij =dc̃n

ij�Hj� /dHj, n0, hold,
similarly as the single bubble case.

Satisfying the boundary equations �12� and �13� with the
potentials �33� and �34�, one can derive a 4N system of or-
dinary differential equations. These equations are given by

dXi

dt
= Ui = 	

j

a1Q1
j = 	

j

ã1Q2
j + Ki, �35�

dRi

dt
= − 	

j

Q1
j �3a2 + a3Ri�Ri = − 	

j

Q2
j �3ã2 + ã3Ri�Ri,

�36�

	
j

�a1 + a2Ri�
dQ1

j

dt
+ 	

j

Q1
j �a2 + a3Ri�

dHj

dt

− ��p2
i �2 + �q2

i �2�Ri + g

= ��	
j

�ã1 + ã2Ri�
dQ2

j

dt
+

dKi

dt
− 	

j

Q2
j �ã2 + ã3Ri�

dHj

dt

− ��p̃2
i �2 + �q̃2

i �2�Ri + g� , �37�

	
j
�a2

2
+ a3Ri + a4

�Ri�2

6
�dQ1

j

dt

+ 	
j

Q1
j�a3

2
+ a4Ri + a5

�Ri�2

6
�dHj

dt
+

F1
i

2

= ��	
j
� ã2

2
+ ã3Ri + ã4

�Ri�2

6
�dQ2

j

dt

− 	
j

Q2
j� ã3

2
+ ã4Ri + ã5

�Ri�2

6
�dHj

dt
+

F2
i

2 � , �38�

where

F1
i = �p2

i �2 + �q2
i �2 − 2�p2

i p3
i + q2

i q3
i �Ri

+ ��p3
i �2 + �q3

i �2 −
4

3
�p2

i p4
i + q2

i q4
i ��Ri

2, �39�

F2
i = F1

i �pn
i → p̃n

i ,qn
i → q̃n

i � , �40�

for i=1, . . . ,N. Here, pn
i ,qn

i and p̃n
i , q̃n

i are defined by

pn
i = 	

j

Q1
i an

ij, qn
i = 	

j

Q1
i bn

ij ,
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p̃n
i = 	

j

Q2
i ãn

ij, q̃n
i = 	

j

Q2
i b̃n

ij .

In Eqs. �35�–�38�, the superscripts of an
ij, bn

ij, ãn
ij, and b̃n

ij are
suppressed for short notations. The system of differential
equations �35�–�38� determine the motions of the N bubbles.

V. MULTIPLE BUBBLE SOLUTIONS

We apply the model to the multiple bubbles to simulate
the bubble interaction process. We assume that N identical
bubbles in the channel of width L are equally spaced along
the horizontal direction, i.e.,

Yi =
�i − 1�L
N − 1

, i = 1, . . . ,N .

If all bubbles have the same initial conditions, they grow
equally and converge to the asymptotic solution of a single
bubble of the channel width L /N. To give the interaction
between bubbles, we give perturbations to the longitudinal
positions of bubbles. The initial velocity and radius of
bubbles are set as

Ui = 0, Ri =
R0

N − 1
, i = 1, . . . ,N , �41�

where R0 is a given constant. For all results in this section,
R0 is set to 2 cm. Note that the perturbation on the radii of
bubbles has similar effects as that on the longitudinal posi-
tions.

Equations �35�–�38� are first applied to three bubble inter-
actions as a simple case. Figure 4 displays the evolution of
three bubbles for the Atwood number A=0.5. The units in
Fig. 4 �and Figs. 5 and 8� are dimensionless, as defined in
Sec. III. The physical parameters are set to g=1 cm/s2 and
k=1 cm−1. The initial bubble heights are X1=X3=0.1 cm and
X2=0. In Fig. 4, we find that the three bubbles advance and
compete for a while. The higher bubble expands and grows
faster than the lower one, while the lower bubble shrinks and
grows slower, and then is washed downstream, after reaching
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FIG. 4. Evolution of three bubbles. The Atwood number is
A=0.5.
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a maximum around t=7. In fact, the higher bubble finally
attains the asymptotic velocity and radius of a single bubble
of the channel width. Therefore, the front of the channel is
eventually filled with the higher bubble. In Fig. 4, the smaller
bubble tends to recover its size when it is in the far down-
stream. This behavior is due to the incorrect description of
the model for the flow in the far field behind the bubble �7�.
In reality, the spikes are formed at the back of the bubble and
the smaller bubble merges into the spike region. We see from
Figs. 4 �and 5� that the dynamics in the far field give little
influence to the motion of the front bubble.

Figure 5 shows the bubble velocity of N=3 for selected
Atwood numbers. The dashed curves correspond to A=0.9,
the solid curves to A=0.5, and the dash-dotted curves to A
=0.2. The initial conditions are the same as Fig. 4. In Fig. 5,
the solutions of the first and third bubble are overlapped,
since two bubbles are the same except the horizontal posi-
tion. We observe that the bubble velocities are nearly the
same at early times and saturate with around the asymptotic
velocity of a single bubble of the half channel width. The
competition begins as the velocities saturate, and then the
higher bubble accelerates and the lower bubble decelerates.
Finally, the higher bubble converges to the asymptotic solu-
tion of a single bubble of the whole channel width. We also
find that, for a smaller Atwood number, it takes longer com-
petition time and the bubble front has a smaller growth rate.

To quantify the competition time, we consider the merger
rate of three bubbles. From the criterion in Refs. �17–19�, the
merger time is defined by �= tb− ta and the merger rate by
1/�, where ta is the time when the velocity of a smaller
bubble has a maximum and tb the time when it becomes zero.
Figure 6 plots the merger rates with respect to the difference
of initial bubble heights �X=X1−X2 for selected Atwood
numbers. For all cases, the merger rates are increasing func-
tions for �X, so that the bubbles merge faster for larger ini-
tial perturbations. For fixed �X, the merger rate is reduced as
the density ratio decreases, as indicated in Fig. 5. Note that
the merger rate is zero at �X=0. Figure 7 is the merger rate
with respect to the Atwood number. The initial longitudinal

perturbations are set to �X=0.1 cm. We see that the merger
rate is an increasing function for the Atwood number and it
quickly reduces for small Atwood numbers.

Figure 8 illustrates the evolution of 20 bubbles for A
=0.5. Initially, the longitudinal positions of bubbles Xi are
randomly perturbed in the interval �0,0.01� cm. Figure 8
clearly shows the interaction process of bubbles. At early
times, the bubbles move forward and compete with each
other, and then the higher bubbles grow faster and expand,
and the number of bubbles at the front decreases. Only nine
bubbles survived at t=5.5 in Fig. 8. Figure 9 is the bubble
positions versus Agt2 for Fig. 8. We see that the bubble front
grows linearly in t2. We have checked that the results for
different Atwood numbers have similar behaviors as Figs. 8
and 9, and the difference is a faster �slower� evolution for
larger �lower� density ratio.

We have run simulations for N=20 for several Atwood
numbers, to estimate the growth coefficient � of the scaling
law �1�. Figure 10 shows the result of the model for the
coefficient � with respect to the Atwood number. The value
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FIG. 8. Evolution of multiple
bubbles with N=20. The Atwood
number is A=0.5.
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of � in Fig. 10 ranges from 0.041 to 0.072. Previous results
for �, in two dimensions, are ��0.058–0.065 from the ex-
periments by Read �14� and ��0.04–0.05 from the numeri-
cal simulations by Youngs �15,16�. The results using front
tracking methods by Glimm et al. �32� found ��0.06 on
average, and simulations using lattice Boltzmann methods by
Clark �33� gave ��0.05 on average. Our result gives the
average value of ��0.057, and therefore agrees well with
the previous results. Note that the growth of the mixing zone
may be varied by physical factors such as initial conditions,
dimensions, surface tension, diffusion, and viscosity. In Fig.
10, we also observe an interesting behavior that � slightly
depends on the density ratio and is smaller for a larger At-
wood number. This result is in accordance with LEM �linear
electric motor� experiments in three dimensions by Dimonte
and Schneider �34�, which gave ��0.053±0.06 for A�0.5
and ��0.049±0.003 for A�0.8. The recent experiment by
Banerjee and Andrews �35� measures ��0.065–0.07 for
small Atwood numbers, 0.035�A�0.1. For the validation
of the downward behavior of �, more comprehensive experi-
ments and numerical simulations are called for.

There is a difference between our result and Zufiria �7� for
the prediction of �. The growth coefficient for A=1 in Fig.
10 is ��0.041–0.045, while Zufiria reported �
�0.049–0.055, for the same initial random perturbations Xi
in the interval �0,0.01� cm with the number of bubbles N
=20. This is due to different settings of the the wave number
�or the channel width� and the initial velocity. The channel
width considered here is twice larger than that in Zufiria.
Moreover, the initial velocity is set to 0 in our simulations,
while in Zufiria, the asymptotic velocity of a single bubble is
used for the initial velocity, in order to reduce the transient
time for bubble interactions. If the channel width is reduced
by half, or the asymptotic velocity is used for the initial
condition in our simulations, the value of � increases by
around 0.005. When both the channel width and the initial
velocity are set to the same as Zufiria, we recover the result
��0.049–0.055.

It has been known that the ratio of the bubble width to the
bubble height has a self-similar behavior �17,23,34,36–39�.
To examine this, we use the diameter of the bubble curvature
instead of the bubble width, because it is easier to evaluate in
the present model and is comparable to the bubble width, as
shown for the single bubble case. Figure 11 plots the ratio

�=2R̄ /h with respect to Agt2 for A=0.5 for various runs,

where R̄ is defined as the average radius of curvatures of
bubbles with positive velocities. We find in Fig. 11 that, in
the scale invariant regime, � has the minimum of 0.43 and
the maximum of 0.67, and the average for each run ranges
between 0.5 and 0.6. Therefore, the RT bubbles indeed grow
self-similarly with the the aspect ratio �. Figure 12 is the
averages of the similarity ratio � in the scale invariant re-
gime with respect to the Atwood number. The values of � are
in the range of 0.48 and 0.61, and slightly increase with the
Atwood number. This result is consistent with the LEM ex-
periments �34�, and theoretical predictions by Mikaelian �36�
and Dimonte �39�. The values for � of these results are quan-
titatively in similar range, but the dependence on the Atwood
number differs. The LEM experiments obtain ��0.3�1+A�,

which has a larger slope with A than the present model.
Comparing Figs. 10 and 12, we find that the parameter � is
less sensitive to the Atwood number than �.

A variety of high-resolution three-dimensional numerical
simulations have recently been employed for the turbulent
RT instability �40–42�, and reported that the growth constant
� depends on initial conditions. Dimonte �39� proposed a
mode-competition model to quantify the effect of initial con-
ditions. We mentioned the dependence of � on the wave
number �or the channel width� in the present model, and this
fact already reflects the dependence of the bubble evolutions
on the initial conditions. For further investigations on the
initial conditions, we run simulations for various initial ran-
dom perturbations. Figure 13 shows variations of the growth
constant � with respect to initial perturbation amplitudes for
the Atwood numbers A=0.3 and A=1. The number of
bubbles are N=20 and the wave number is k=1 cm−1. We
observe a logarithmic increase of � with respect to the initial
perturbation amplitude for both cases. These results on the

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

A

α

FIG. 10. Growth coefficients � versus the Atwood number.

0 2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Agt2 (cm)

β

A=0.5

FIG. 11. Self-similarity ratio �=2R̄ /h versus Agt2 for
A=0.5.

BUBBLE INTERACTION MODEL FOR HYDRODYNAMIC… PHYSICAL REVIEW E 75, 066312 �2007�

066312-9



variation of � for the initial perturbation amplitude agree
with the mode-competition model �39� and numerical simu-
lations �42�.

VI. DISCUSSION AND CONCLUSIONS

The potential flow model with moving source singulari-
ties has been extended to the unstable interface of finite den-
sity ratio. We have presented the solutions for a single
bubble, at different stages, and investigated the dynamics of
the multiple bubble interactions.

We have shown that the Zufiria-type model provides com-
prehensive descriptions for the evolution of bubbles. The
Zufiria model gives the exponential growth rate at the linear
stage, and the predictions for the bubble curvature, as well as
the bubble velocity, from the model agrees better with the
numerical results than the Layzer model. The quantitative
differences between two models for the solutions come from
the choice of potentials, and therefore the source-type poten-
tial is more appropriate for the description of the unstable
interface than the potential of a sinusoidal form.

The comparison of the solution for a single bubble with
the numerical results raised the issue of the independence of
density ratios for the asymptotic curvature. The model gives
the constant asymptotic curvature, while the numerical re-
sults slightly varies with the density ratio. To know this ques-
tion, fine scale computations with zero viscosity and surface
tension are needed. However, long-time simulations for the
RT instability under those conditions are, in fact, very diffi-
cult and it might be necessary to develop more advanced
numerical methods.

Several models for the extension of a single RT bubble to
finite density ratio have been proposed, but a complete mod-
eling is still not accomplished. The present model and the
extension of Layzer’s model �8� do not satisfy the zero ve-
locity condition at negative infinity, allowing a mass flux.
The model in Abarzhi et al. �12� satisfies the boundary con-
ditions, but does not give good predictions for the bubble
velocity and curvature for overall Atwood numbers. A theory

which simultaneously satisfies the boundary conditions and
gives correct solutions for a single RT bubble, has not been
established yet, and is remained for development.

The Zufiria model has successfully demonstrated the
bubble competition process in the system of finite density
ratio. For the random perturbations of the RT instability, it is
difficult to draw unified conclusions from numerical simula-
tions, because numerical results have usually been reported
only for limited values of the Atwood number, due to high
computation costs, and the results depend on the numerical
method and zoning. The potential flow model provides the
simple equations for the motion of bubbles, so that it is ca-
pable to simulate the multiple bubble evolutions for a wide
range of the Atwood number. The results of the model for the
scaling law of the bubble front showed good agreements
with the experimental and numerical results. The growth
constant � and the aspect ratio � of the bubble size to the
height have dependence on the density ratio. The model pre-
dicts that the similarity parameter � exhibits an opposite
slope to � with respect to the Atwood number, and its de-
pendence is weaker than �.
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Theoretical models to estimate � differ by their descrip-
tion of self-similarity. The models proceed in two limiting
ways, namely, by the nonlinear coupling of two or more
bubbles to form a larger structure �merger� and by the growth
and saturation of ambient modes �competition�. The bubble
merger models involve the nonlinear coupling of saturated
modes �h�1/k�, and thus may produce a universal �
�17,19,20,23�. The mode-competition model predicts varia-
tions of � on the Atwood number and the initial perturba-
tions �39�. The results of the Zufiria model for the self-
similarity parameters are consistent with the mode-
competition model.

The present model gives an appropriate description for the
flow near the interface and assumed that the far field behind
the bubble has little influence on the motion of the bubble
front. Although this assumption was validated by compari-
sons with the numerical results, the dynamics of bubbles
might be influenced by secondary Kelvin-Helmholtz insta-
bilities around spikes at late nonlinear stage, or turbulent
stage, when vorticities are prominent and critically strong.
Recently, Ramaprabhu et al. �43� studied the validity regime
of potential flow models and the influences of vorticities on
the bubble motion. It is observed that a single-mode RT
bubble of low density difference exhibits a late-time reaccel-
eration, due to the strong Kelvin-Helmholtz roll-up, while
for large density ratio, the formation of the secondary insta-
bility is suppressed and the terminal bubble velocity remains
constant. The Kelvin-Helmholtz instability may also affect
the bubble competition process, and thus might produce
higher values of � than the predictions from the Zufiria
model, at fully turbulent stages for low density ratios.

The bubble evolutions in two dimensions �2D� have been
presented by the Zufiria model, but the mixing by RT insta-
bility occurs in three dimensions �3D� in reality. There are
several differences from the dimensionality on the bubble
interaction dynamics. The asymptotic velocity of a single
bubble increases in 3D by about a factor of 1.5 �8,9�. A 3D
bubble has to overcome more of its neighbors, while a
bubble in 2D competes with only two neighbors. These two
factors have opposite effects on the growth rate and may
explain the result in Youngs �44�: The kinetic energy is less
dissipated in 2D than 3D, and therefore the 3D mixing zone
grows more rapidly than 2D at early times and slows down
when the turbulence develops. We also note that slightly
larger values of � in 3D than 2D were reported in compari-
son studies �14,23,38,44,45�, albeit some quantitative varia-
tions.

A similar type of the unstable interface as the RT insta-
bility is the Richtmyer-Mehksov instability �4,5,46�, which is
driven by a shock wave, and the mixing by this instability
has also been studied intensively. The applications of the
potential flow model to bubble interactions of the shock-
induced instability will be the next step of the research.
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APPENDIX

The full expressions of the coefficients cn
ij =an

ij +ibn
ij in Eq.

�33�, up to n=5, are given here.

a1
ij =

k�

2 	
m=1

2
rm − �

dm
, b1

ij =
k�

2 	
m=1

2
sm

dm
,

a2
ij = −

k2�

4 	
m=1

2
− 2� + �1 + �2�rm

dm
2 , b2

ij =
k2���2 − 1�

4 	
m=1

2
sm

dm
2 ,

a3
ij =

k3��1 − �2�
8 	

m=1

2
�1 + �2�rm + ��− 4 + 2rm

2 �
dm

3 ,

b3
ij =

k3�

8 	
m=1

2
�1 − 6�2 + �4 + 2�� + �3�rm�sm

dm
3 ,

a4
ij = −

k4�

16 	
m=1

2
�m

dm
4 ,

b4
ij =

k4���2 − 1�
16

�	
m=1

2
�1 + �4 + 8��1 + �2�rm + �2�− 22 + 4rm

2 ��sm

dm
4 ,

a5
ij =

k5��1 − �2�
32 	

m=1

2
�m

dm
5 ,

where

dm = 1 + �2 − 2�rm,

�m = rm + �6rm − 16�3�− 2 + rm
2 � + 8��1 + �4��− 1 + rm

2 �

+ �2rm�1 + �2��− 13 + 4rm
2 � ,

�m = rm + �6rm + 11�2�1 + �2�rm�− 7 + 4rm
2 � + 2��1 + �4��− 8

+ 11rm
2 � + 4�3�40 − 29rm

2 + 2rm
4 � ,

for m=1, 2, and

� = ek/2�Xj−Xi−Hj�,

r1 = cos
k�Y j − Yi�

2
, s1 = sin

k�Y j − Yi�
2

,

r2 = cos
k�Y j + Yi�

2
, s2 = − sin

k�Y j + Yi�
2

.

The expressions of c̃n
ij in Eq. �34� are followed by the relation

c̃n
ij�Hj�=cn

ij�−Hj�.
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